A quick wrap-up of the git stuff from last time

We’ll install a package called usethis, which contains some helpful programming tools for the weeks ahead:

install.packages("usethis")

We’ll use this to create a personal access token for github. This ensures we don’t have to retype our password every time we need to access GitHub.

And we will use this token to access our account via RStudio.

credentials::set_github_pat("PAT here")

Now, refresh your R session.

Once this is done, we can check that this worked like so:

usethis::git_sitrep()

The Tree of Life

First, we need to do some installs.

install.packages("devtools")
devtools::install_github("ropensci/rotl")
devtools::install_github("ropensci/traits")
#if (!requireNamespace("BiocManager"))
#    install.packages("BiocManager")
#BiocManager::install()
# Install package dependencies
#BiocManager::install("Biostrings")
#BiocManager::install("biomaRt")
#install.packages("biomartr", dependencies = TRUE)

Now, load your packages:

library(rotl)
#library(biomatr)

Open Tree

First, we’re going to look for some data. Discuss with your neighbor a clade you like and want to build a tree of. For example, perhaps I really like hominids.

library(rotl)
apes <- c("Pongo", "Pan", "Gorilla", "Hoolock", "Homo")
(resolved_names <- rotl::tnrs_match_names(apes))
##   search_string unique_name approximate_match score ott_id is_synonym
## 1         pongo       Pongo             FALSE     1 417949      FALSE
## 2           pan         Pan             FALSE     1 417957      FALSE
## 3       gorilla     Gorilla             FALSE     1 417969      FALSE
## 4       hoolock     Hoolock             FALSE     1 712902      FALSE
## 5          homo        Homo             FALSE     1 770309      FALSE
##                               flags number_matches
## 1                                                2
## 2                    sibling_higher              2
## 3                    sibling_higher              1
## 4                                                1
## 5 extinct_inherited, sibling_higher              1

Put the names of five genera into the function. If you want, you can use mine below, or pick new ones you prefer.

ants <- c("Martialis", "Atta", "Ectatomma", "Tatuidris", "Aneuretus", "Xymmer", "Aenictus")
(resolved_names <- rotl::tnrs_match_names(ants))
##   search_string unique_name approximate_match score  ott_id is_synonym flags
## 1     martialis   Martialis             FALSE     1  334634      FALSE      
## 2          atta        Atta             FALSE     1  709964      FALSE      
## 3     ectatomma   Ectatomma             FALSE     1  162845      FALSE      
## 4     tatuidris   Tatuidris             FALSE     1  150177      FALSE      
## 5     aneuretus   Aneuretus             FALSE     1  425343      FALSE      
## 6        xymmer      Xymmer             FALSE     1 4583488      FALSE      
## 7      aenictus    Aenictus             FALSE     1  169919      FALSE      
##   number_matches
## 1              1
## 2              1
## 3              1
## 4              1
## 5              1
## 6              1
## 7              1

Try to view them on a tree:

tr <- tol_induced_subtree(ott_ids = ott_id(resolved_names))
## 
Progress [----------------------------------] 0/43 (  0) ?s
Progress [================================] 43/43 (100)  0s
                                                            
## Warning in collapse_singles(tr, show_progress): Dropping singleton nodes with
## labels: mrcaott1682ott35311, mrcaott1682ott34821, mrcaott34821ott950983,
## Aneuretinae ott393261, mrcaott4706ott5525, mrcaott5525ott8038,
## mrcaott8038ott8685, mrcaott8685ott36581, mrcaott8685ott56535,
## mrcaott8685ott72729, mrcaott8685ott86888, mrcaott86888ott129302, Attini
## ott344333, mrcaott114767ott114779, mrcaott114779ott339738,
## mrcaott114779ott116619, mrcaott116619ott148996, mrcaott148996ott1071522,
## mrcaott148996ott150184, mrcaott148996ott339763, mrcaott148996ott409299,
## mrcaott48019ott688185, Ectatomminae ott327970, mrcaott48019ott162057,
## mrcaott7438ott5553505, mrcaott7438ott7439, mrcaott7439ott165217,
## mrcaott7439ott15430, mrcaott15430ott120483, mrcaott15430ott150187,
## mrcaott15430ott169913, mrcaott17752ott98880, mrcaott17752ott150176,
## mrcaott150176ott1037289, mrcaott150176ott4539262, Agroecomyrmecinae ott504610,
## mrcaott98886ott152924, mrcaott152924ott452719, mrcaott152924ott739132,
## mrcaott152924ott503313, mrcaott503313ott928530, mrcaott928530ott6280946,
## Martialinae ott334635
plot(tr)

I’m a little surprised by this tree.

Looking for data

We’re going to try to build a tree of these taxa from GenBank Data. Much like accessing NOAA data, we will need to make an API Key. Go here and register.

Now that we have that key, we can access NCBI:

library(rentrez)
entrez_search(db = "Nucleotide", term="Ectatomma", api_key ="96b569c049fe3d3055c5b747112dfec84308")
## Entrez search result with 707 hits (object contains 20 IDs and no web_history object)
##  Search term (as translated):  "Ectatomma"[Organism] OR Ectatomma[All Fields]

Holy moley that’s a lot of data. If we do that for every taxon, we’ll end up with a mess. Why don’t we try to filter it a bit.

Ectatomma <- entrez_search(db = "Nucleotide", term="Ectatomma AND 2018:2019[PDAT]", retmax = 100, api_key ="96b569c049fe3d3055c5b747112dfec84308")

So there is a good amount of data for our Ectatomma ants. We’re going to download some. And this gets a little tricky. First, I want you to run each line in the loop and get a feel for what each does. What does entrez_fetch do? What does cat do? Feel free to look at documentation.

for( seq_start in seq(1,50,10)){
     recs <- entrez_fetch(db="nuccore", id = Ectatomma$ids,
                          rettype="fasta", retmax=1)
     cat(recs, file="Ect.seqs.fasta", append=TRUE)
     cat(seq_start+49, "sequences downloaded\r")
 }
## 50 sequences downloaded
60 sequences downloaded
70 sequences downloaded
80 sequences downloaded
90 sequences downloaded

Now, let’s look at this file. What do we notice about it? What information is in this file?

Before we move on, we’re going to try one other thing. Try modifying one of the two chunks above (HINT: you will have to rerun both) in order to only get data from the mitochondrial COI gene.

All right, let’s move on to trying to write a function that will return all IDs for all of the ants.

search_year <- function(ant){
    query <- paste0(ant, " AND ", "2016:2019[PDAT]")
    search_returns <- c(entrez_search(db="Nucleotide", term=query, retmax=20,api_key ="96b569c049fe3d3055c5b747112dfec84308"))
  return(search_returns)
}


ants <- as.vector(resolved_names$unique_name)

labels <- sapply(ants,search_year,  USE.NAMES = T)

Have a look at ?sapply. Talk to a partner and see if you can figure out what sapply does.

So what is the problem with this output? It’s hard to parse - let’s make it easier to pull data for one taxon at a time.

search_year <- function(ant){
    search_returns = c()
    query <- paste0(ant," AND ", "2019:2022[PDAT]")
    search_returns[ant] <- c(entrez_search(db="Nucleotide", term=query, retmax=20,api_key ="96b569c049fe3d3055c5b747112dfec84308"))
  return(search_returns)
}

ants <- as.vector(resolved_names$unique_name)

labels <- sapply(ants,search_year,  USE.NAMES = T)

There’s one remaining problem, though. Have a look at your outputs. How do you think we can fix this one? Let’s have a look at when papers related to Xymmer were published:

entrez_fetch(db="pmc", term="Xymmer", id= "1103332937", retmax=20, rettype= "text", api_key ="96b569c049fe3d3055c5b747112dfec84308")

Run this as-is and take a look at the outputs.

search_year <- function(ant){
    search_returns = c()
    query <- paste0(ant, "[Organism]", " AND 18s")
    search_returns[ant] <- c(entrez_search(db="Nucleotide", term=query, retmax=1,api_key ="96b569c049fe3d3055c5b747112dfec84308"))
  return(search_returns)
}


ants <- as.vector(resolved_names$unique_name)

labels <- sapply(ants,search_year,  USE.NAMES = F)

Now, we’re going to get the genetic data.

search_seq <- function(labels){
     recs <- entrez_fetch(db="nuccore", id = labels,
                          rettype="fasta", retmax=1)
     cat(recs, file="Ants.seqs.fasta", append=TRUE)
  return(recs)
}


seq_returns <- sapply(labels, search_seq,  USE.NAMES = T)

Excercise:

18s is an easy one. Let’s try and pull another common gene for phylogenetics, COX1.

Make a new cell and modify our search_year code to pull COX1 data. What are the most immediate problems you notice?

Try resolving the issue. Can you pinpoint which part of our query gives us trouble?

Just for fun

Take a quick look at this output - it’s a little neat. We’re not going to go into building phylogenetic trees - that’s a topic for Systematics. Here’s a quick look at these data.

## Installing package into '/private/var/folders/54/9kd8nf1x4fnft0ymvb11qmc80000gn/T/Rtmpie5FUp/temp_libpath3b62461540c7'
## (as 'lib' is unspecified)
## 
##   There is a binary version available but the source version is later:
##     binary source needs_compilation
## ape  5.7-1    5.8              TRUE
## installing the source package 'ape'
## Warning in install.packages("ape"): installation of package 'ape' had non-zero
## exit status
coi <- ape::read.dna("Ants.seqs.fasta", format="fasta")