08_Tree_of_life.Rmd
First, we need to do some installs.
install.packages("devtools")
devtools::install_github("ropensci/rotl")
devtools::install_github("ropensci/traits")
install.packages('phylotaR')
Now, load your packages:
First, we’re going to look for some data. Discuss with your neighbor a clade you like and want to build a tree of. For example, perhaps I really like hominids.
## search_string unique_name approximate_match ott_id is_synonym flags
## 1 pongo Pongo FALSE 417949 FALSE
## 2 pan Pan FALSE 417957 FALSE
## 3 gorilla Gorilla FALSE 417969 FALSE
## 4 hoolock Hoolock FALSE 712902 FALSE
## 5 homo Homo FALSE 770309 FALSE
## number_matches
## 1 2
## 2 2
## 3 1
## 4 1
## 5 1
Put the names of five genera into the function. If you want, you can use mine below.
## search_string unique_name approximate_match ott_id is_synonym flags
## 1 martialis Martialis FALSE 334634 FALSE
## 2 atta Atta FALSE 709964 FALSE
## 3 ectatomma Ectatomma FALSE 162845 FALSE
## 4 tatuidris Tatuidris FALSE 150177 FALSE
## 5 aneuretus Aneuretus FALSE 425343 FALSE
## 6 xymmer Xymmer FALSE 4583488 FALSE
## 7 aenictus Aenictus FALSE 169919 FALSE
## number_matches
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
## 7 1
Try to view them on a tree:
##
Progress [----------------------------------] 0/43 ( 0%) ?s
Progress [================================] 43/43 (100%) 0s
## Warning in collapse_singles(tr, show_progress): Dropping singleton
## nodes with labels: mrcaott1682ott35311, mrcaott1682ott34821,
## mrcaott34821ott950983, Aneuretinae ott393261, mrcaott4706ott5525,
## mrcaott5525ott8038, mrcaott8038ott8685, mrcaott8685ott36581,
## mrcaott8685ott56535, mrcaott8685ott72729, mrcaott8685ott86888,
## mrcaott86888ott129302, Attini ott344333, mrcaott114767ott114779,
## mrcaott114779ott339738, mrcaott114779ott116619, mrcaott116619ott148996,
## mrcaott148996ott1071522, mrcaott148996ott150184, mrcaott148996ott339763,
## mrcaott148996ott409299, mrcaott48019ott671955, Ectatomminae ott327970,
## mrcaott48019ott162057, Dorylinae ott161685, mrcaott7438ott7439,
## mrcaott7439ott165217, mrcaott7439ott15430, mrcaott15430ott120483,
## mrcaott15430ott150187, mrcaott15430ott169913, mrcaott17752ott97752,
## mrcaott17752ott150176, mrcaott150176ott1037289, mrcaott150176ott4539262,
## Agroecomyrmecinae ott504610, mrcaott97755ott149123, mrcaott149123ott452719,
## mrcaott149123ott739132, mrcaott149123ott503313, mrcaott503313ott928530,
## mrcaott928530ott6280946, Martialinae ott334635
I’m a little surprised by this tree.
We’re going to try to build a tree of these taxa from GenBank Data. Much like accessing NOAA data, we will need to make an API Key. Go here and register.
Now that we have that key, we can access NCBI:
library(rentrez)
entrez_search(db = "Nucleotide", term="Ectatomma", api_key ="96b569c049fe3d3055c5b747112dfec84308")
## Entrez search result with 647 hits (object contains 20 IDs and no web_history object)
## Search term (as translated): "Ectatomma"[Organism] OR Ectatomma[All Fields]
Holy moley that’s a lot of data. If we do that for every taxon, we’ll end up with a mess. Why don’t we try to filter it a bit.
Ectatomma <- entrez_search(db = "Nucleotide", term="Ectatomma AND 2018:2019[PDAT]", retmax = 100, api_key ="96b569c049fe3d3055c5b747112dfec84308")
So there is a good amount of data for our Ectatomma ants.
for( seq_start in seq(1,50,100)){
recs <- entrez_fetch(db="nuccore", id = Ectatomma$ids,
rettype="fasta", retmax=50, retstart=seq_start)
cat(recs, file="Ect.seqs.fasta", append=TRUE)
cat(seq_start+49, "sequences downloaded\r")
}
## 50 sequences downloaded
Now, let’s look at this file. What do we notice about it?
All right, let’s move on to trying to write a function that will return all IDs for all of the ants.
search_year <- function(ant){
query <- paste0(ant, " AND ", "2018:2019[PDAT]")
search_returns <- c(entrez_search(db="Nucleotide", term=query, retmax=20,api_key ="96b569c049fe3d3055c5b747112dfec84308"))
return(search_returns)
}
ants <- as.vector(resolved_names$unique_name)
labels <- sapply(ants,search_year, USE.NAMES = T)
Have a look at ?sapply. Talk to a partner and see if you can figure out what sapply does.
So what is the problem with this output? It’s hard to parse - let’s make it easier to pull data for one taxon at a time.
search_year <- function(ant){
search_returns = c()
query <- paste0(ant, " AND ", "2018:2019[PDAT]")
search_returns[ant] <- c(entrez_search(db="Nucleotide", term=query, retmax=20,api_key ="96b569c049fe3d3055c5b747112dfec84308"))
return(search_returns)
}
ants <- as.vector(resolved_names$unique_name)
labels <- sapply(ants,search_year, USE.NAMES = T)
There’s one remaining problem, though. Have a look at your outputs. How do you think we can fix this one? Let’s have a look at when papers related to Xymmer were published:
xymmer_papers <- entrez_search(db="pmc", term="Xymmer", retmax=20, rettype= "text", api_key ="96b569c049fe3d3055c5b747112dfec84308")
xymmer_papers <- entrez_fetch(db="pmc", term="Xymmer", id = xymmer_papers$ids, retmax=20, rettype= "text", api_key ="96b569c049fe3d3055c5b747112dfec84308")
Does this give you a hint about something that needs to change to get more data?
search_year <- function(ant){
search_returns = c()
query <- paste0(ant, " AND ", "2018:2019[PDAT]")
search_returns[ant] <- c(entrez_search(db="Nucleotide", term=query, retmax=20,api_key ="96b569c049fe3d3055c5b747112dfec84308"))
return(search_returns)
}
ants <- as.vector(resolved_names$unique_name)
labels <- sapply(ants,search_year, USE.NAMES = T)
Now, we’re going to get the genetc data.